// • ▌ ▄ ·.  ▄▄▄·  ▄▄ • ▪   ▄▄· ▄▄▄▄·  ▄▄▄·  ▐▄▄▄  ▄▄▄ .
// ·██ ▐███▪▐█ ▀█ ▐█ ▀ ▪██ ▐█ ▌▪▐█ ▀█▪▐█ ▀█ •█▌ ▐█▐▌·
// ▐█ ▌▐▌▐█·▄█▀▀█ ▄█ ▀█▄▐█·██ ▄▄▐█▀▀█▄▄█▀▀█ ▐█▐ ▐▌▐▀▀▀
// ██ ██▌▐█▌▐█ ▪▐▌▐█▄▪▐█▐█▌▐███▌██▄▪▐█▐█ ▪▐▌██▐ █▌▐█▄▄▌
// ▀▀  █▪▀▀▀ ▀  ▀ ·▀▀▀▀ ▀▀▀·▀▀▀ ·▀▀▀▀  ▀  ▀ ▀▀  █▪ ▀▀▀
//      Magicbane Emulator Project © 2013 - 2022
//                www.magicbane.com

package engine.math;

import java.io.IOException;
import java.io.ObjectInput;
import java.io.ObjectOutput;


/**
 * <code>Vector3f</code> defines a Vector for a three float value tuple.
 * <code>Vector3f</code> can represent any three dimensional value, such as a
 * vertex, a normal, etc. Utility methods are also included to aid in
 * mathematical calculations.
 */

public class Vector3f {
    public final static Vector3f ZERO = new Vector3f(0, 0, 0);

    public final static Vector3f UNIT_X = new Vector3f(1, 0, 0);
    public final static Vector3f UNIT_Y = new Vector3f(0, 1, 0);
    public final static Vector3f UNIT_Z = new Vector3f(0, 0, 1);
    public final static Vector3f UNIT_XYZ = new Vector3f(1, 1, 1);

    /**
     * the x value of the vector.
     */
    public float x;

    /**
     * the y value of the vector.
     */
    public float y;

    /**
     * the z value of the vector.
     */
    public float z;

    /**
     * Constructor instantiates a new <code>Vector3f</code> with default values
     * of (0,0,0).
     */
    public Vector3f() {
        x = y = z = 0.0f;
    }

    /**
     * Constructor instantiates a new <code>Vector3f</code> with provides
     * values.
     *
     * @param x the x value of the vector.
     * @param y the y value of the vector.
     * @param z the z value of the vector.
     */
    public Vector3f(float x, float y, float z) {
        this.x = x;
        this.y = y;
        this.z = z;
    }

    public Vector3f(Vector3fImmutable original) {
        this.x = original.x;
        this.y = original.y;
        this.z = original.z;
    }

    /**
     * Constructor instantiates a new <code>Vector3f</code> that is a copy of
     * the provided vector
     *
     * @param copy The Vector3f to copy
     */
    public Vector3f(Vector3f copy) {
        this.set(copy);
    }

    /**
     * Check a vector... if it is null or its floats are NaN or infinite, return
     * false. Else return true.
     *
     * @param vector the vector to check
     * @return true or false as stated above.
     */
    public static boolean isValidVector(Vector3f vector) {
        if (vector == null)
            return false;
        if (Float.isNaN(vector.x) || Float.isNaN(vector.y) || Float.isNaN(vector.z))
            return false;
        return !Float.isInfinite(vector.x) && !Float.isInfinite(vector.y) && !Float.isInfinite(vector.z);
    }

    public static void generateOrthonormalBasis(Vector3f u, Vector3f v, Vector3f w) {
        w.normalizeLocal();
        generateComplementBasis(u, v, w);
    }

    public static void generateComplementBasis(Vector3f u, Vector3f v, Vector3f w) {
        float fInvLength;

        if (FastMath.abs(w.x) >= FastMath.abs(w.y)) {
            // w.x or w.z is the largest magnitude component, swap them
            fInvLength = FastMath.invSqrt(w.x * w.x + w.z * w.z);
            u.x = -w.z * fInvLength;
            u.y = 0.0f;
            u.z = +w.x * fInvLength;
            v.x = w.y * u.z;
            v.y = w.z * u.x - w.x * u.z;
            v.z = -w.y * u.x;
        } else {
            // w.y or w.z is the largest magnitude component, swap them
            fInvLength = FastMath.invSqrt(w.y * w.y + w.z * w.z);
            u.x = 0.0f;
            u.y = +w.z * fInvLength;
            u.z = -w.y * fInvLength;
            v.x = w.y * u.z - w.z * u.y;
            v.y = -w.x * u.z;
            v.z = w.x * u.y;
        }
    }

    /**
     * Returns the 2D face direction from rotation.
     *
     * @param rotation Rotation in radians
     */
    public static Vector3f getFaceDir(float rotation) {
        return new Vector3f(FastMath.sin(rotation), 0f, FastMath.cos(rotation));
    }

    /**
     * Returns the 2D cross direction (perpendicular face direction) from rotation.
     *
     * @param rotation Rotation in radians
     */
    public static Vector3f getCrossDir(float rotation) {
        return new Vector3f(FastMath.cos(rotation), 0f, FastMath.sin(rotation));
    }

    public static Vector3f rotateAroundPoint(Vector3f origin, Vector3f point, double angle) {

        float angleRadians;
        double modifiedAngle;

        // Convert angle to radians

        modifiedAngle = angle;

        if (angle < 0)
            modifiedAngle = 360 + modifiedAngle;

        angleRadians = (float) Math.toRadians(modifiedAngle);

        return rotateAroundPoint(origin, point, angleRadians);
    }

    public static Vector3f rotateAroundPoint(Vector3f origin, Vector3f point, float radians) {

        Vector3f outVector;
        Vector3f directionVector;
        Quaternion angleRotation;

        // Build direction vector relative to origin

        directionVector = new Vector3f(point.subtract(origin));

        // Build quaternion rotation

        angleRotation = new Quaternion().fromAngleAxis(radians, new Vector3f(0, 1, 0));

        // Apply rotation to direction vector

        directionVector = angleRotation.mult(directionVector);

        // Translate from origin back to new rotated point

        outVector = origin.add(directionVector);

        return outVector;

    }

    public static Vector3f min(Vector3f vectorA, Vector3f vectorB) {

        return new Vector3f(Math.min(vectorA.x, vectorB.x),
                Math.min(vectorA.y, vectorB.y),
                Math.min(vectorA.z, vectorB.z));
    }

    public static Vector3f max(Vector3f vectorA, Vector3f vectorB) {

        return new Vector3f(Math.max(vectorA.x, vectorB.x),
                Math.max(vectorA.y, vectorB.y),
                Math.max(vectorA.z, vectorB.z));
    }

    public static Vector3f rotateAroundPoint(Vector3f origin, Vector3f point, Quaternion angleRotation) {

        Vector3f outVector;
        Vector3f directionVector;
        // Build direction vector relative to origin
        directionVector = new Vector3f(point.subtract(origin));
        directionVector = angleRotation.mult(directionVector);

        // Translate from origin back to new rotated point

        outVector = origin.add(directionVector);

        return outVector;

    }

    /**
     * <code>set</code> sets the x,y,z values of the vector based on passed
     * parameters.
     *
     * @param x the x value of the vector.
     * @param y the y value of the vector.
     * @param z the z value of the vector.
     * @return this vector
     */
    public Vector3f set(float x, float y, float z) {
        this.x = x;
        this.y = y;
        this.z = z;
        return this;
    }

    /**
     * <code>set</code> sets the x,y,z values of the vector by copying the
     * supplied vector.
     *
     * @param vect the vector to copy.
     * @return this vector
     */
    public Vector3f set(Vector3f vect) {
        this.x = vect.x;
        this.y = vect.y;
        this.z = vect.z;
        return this;
    }

    /**
     * <code>add</code> adds a provided vector to this vector creating a
     * resultant vector which is returned. If the provided vector is null, null
     * is returned.
     * <p>
     * Neither 'this' nor 'vec' are modified.
     *
     * @param vec the vector to add to this.
     * @return the resultant vector.
     */
    public Vector3f add(Vector3f vec) {
        if (null == vec) {
            return null;
        }
        return new Vector3f(x + vec.x, y + vec.y, z + vec.z);
    }

    /**
     * <code>add</code> adds the values of a provided vector storing the values
     * in the supplied vector.
     *
     * @param vec    the vector to add to this
     * @param result the vector to store the result in
     * @return result returns the supplied result vector.
     */
    public Vector3f add(Vector3f vec, Vector3f result) {
        result.x = x + vec.x;
        result.y = y + vec.y;
        result.z = z + vec.z;
        return result;
    }

    /**
     * <code>addLocal</code> adds a provided vector to this vector internally,
     * and returns a handle to this vector for easy chaining of calls. If the
     * provided vector is null, null is returned.
     *
     * @param vec the vector to add to this vector.
     * @return this
     */
    public Vector3f addLocal(Vector3f vec) {
        if (null == vec) {
            return null;
        }
        x += vec.x;
        y += vec.y;
        z += vec.z;
        return this;
    }

    /**
     * <code>add</code> adds the provided values to this vector, creating a new
     * vector that is then returned.
     *
     * @param addX the x value to add.
     * @param addY the y value to add.
     * @param addZ the z value to add.
     * @return the result vector.
     */
    public Vector3f add(float addX, float addY, float addZ) {
        return new Vector3f(x + addX, y + addY, z + addZ);
    }

    /**
     * <code>addLocal</code> adds the provided values to this vector internally,
     * and returns a handle to this vector for easy chaining of calls.
     *
     * @param addX value to add to x
     * @param addY value to add to y
     * @param addZ value to add to z
     * @return this
     */
    public Vector3f addLocal(float addX, float addY, float addZ) {
        x += addX;
        y += addY;
        z += addZ;
        return this;
    }

    /**
     * <code>scaleAdd</code> multiplies this vector by a scalar then adds the
     * given Vector3f.
     *
     * @param scalar the value to multiply this vector by.
     * @param add    the value to add
     */
    public void scaleAdd(float scalar, Vector3f add) {
        x = x * scalar + add.x;
        y = y * scalar + add.y;
        z = z * scalar + add.z;
    }

    /**
     * <code>scaleAdd</code> multiplies the given vector by a scalar then adds
     * the given vector.
     *
     * @param scalar the value to multiply this vector by.
     * @param mult   the value to multiply the scalar by
     * @param add    the value to add
     */
    public void scaleAdd(float scalar, Vector3f mult, Vector3f add) {
        this.x = mult.x * scalar + add.x;
        this.y = mult.y * scalar + add.y;
        this.z = mult.z * scalar + add.z;
    }

    /**
     * <code>dot</code> calculates the dot product of this vector with a
     * provided vector. If the provided vector is null, 0 is returned.
     *
     * @param vec the vector to dot with this vector.
     * @return the resultant dot product of this vector and a given vector.
     */
    public float dot(Vector3f vec) {
        if (null == vec) {
            return 0;
        }
        return x * vec.x + y * vec.y + z * vec.z;
    }

    /**
     * Returns a new vector which is the cross product of this vector with the
     * specified vector.
     * <p>
     * Neither 'this' nor v are modified. The starting value of 'result'
     * </P>
     *
     * @param v the vector to take the cross product of with this.
     * @return the cross product vector.
     */
    public Vector3f cross(Vector3f v) {
        return cross(v, null);
    }

    /**
     * <code>cross</code> calculates the cross product of this vector with a
     * parameter vector v. The result is stored in <code>result</code>
     * <p>
     * Neither 'this' nor v are modified. The starting value of 'result' (if
     * any) is ignored.
     * </P>
     *
     * @param v      the vector to take the cross product of with this.
     * @param result the vector to store the cross product result.
     * @return result, after receiving the cross product vector.
     */
    public Vector3f cross(Vector3f v, Vector3f result) {
        return cross(v.x, v.y, v.z, result);
    }

    /**
     * <code>cross</code> calculates the cross product of this vector with a
     * Vector comprised of the specified other* elements. The result is stored
     * in <code>result</code>, without modifying either 'this' or the 'other*'
     * values.
     *
     * @param otherX x component of the vector to take the cross product of with
     *               this.
     * @param otherY y component of the vector to take the cross product of with
     *               this.
     * @param otherZ z component of the vector to take the cross product of with
     *               this.
     * @param result the vector to store the cross product result.
     * @return result, after receiving the cross product vector.
     */
    public Vector3f cross(float otherX, float otherY, float otherZ, Vector3f result) {
        if (result == null)
            result = new Vector3f();
        float resX = ((y * otherZ) - (z * otherY));
        float resY = ((z * otherX) - (x * otherZ));
        float resZ = ((x * otherY) - (y * otherX));
        result.set(resX, resY, resZ);
        return result;
    }

    /**
     * <code>crossLocal</code> calculates the cross product of this vector with
     * a parameter vector v.
     *
     * @param v the vector to take the cross product of with this.
     * @return this.
     */
    public Vector3f crossLocal(Vector3f v) {
        return crossLocal(v.x, v.y, v.z);
    }

    /**
     * <code>crossLocal</code> calculates the cross product of this vector with
     * a parameter vector v.
     *
     * @param otherX x component of the vector to take the cross product of with
     *               this.
     * @param otherY y component of the vector to take the cross product of with
     *               this.
     * @param otherZ z component of the vector to take the cross product of with
     *               this.
     * @return this.
     */
    public Vector3f crossLocal(float otherX, float otherY, float otherZ) {
        float tempx = (y * otherZ) - (z * otherY);
        float tempy = (z * otherX) - (x * otherZ);
        z = (x * otherY) - (y * otherX);
        x = tempx;
        y = tempy;
        return this;
    }

    /**
     * <code>length</code> calculates the magnitude of this vector.
     *
     * @return the length or magnitude of the vector.
     */
    public float length() {
        return FastMath.sqrt(lengthSquared());
    }

    /**
     * <code>lengthSquared</code> calculates the squared value of the magnitude
     * of the vector.
     *
     * @return the magnitude squared of the vector.
     */
    public float lengthSquared() {
        return x * x + y * y + z * z;
    }

    /**
     * <code>distanceSquared</code> calculates the distance squared between this
     * vector and vector v.
     *
     * @param v the second vector to determine the distance squared.
     * @return the distance squared between the two vectors.
     */
    public float distanceSquared(Vector3f v) {
        double dx = x - v.x;
        double dy = y - v.y;
        double dz = z - v.z;
        return (float) (dx * dx + dy * dy + dz * dz);
    }

    public float distanceSquared2D(Vector3f v) {
        double dx = x - v.x;
        double dz = z - v.z;
        return (float) (dx * dx + dz * dz);
    }

    /**
     * <code>distance</code> calculates the distance between this vector and
     * vector v.
     *
     * @param v the second vector to determine the distance.
     * @return the distance between the two vectors.
     */
    public float distance(Vector3f v) {
        return FastMath.sqrt(distanceSquared(v));
    }

    public float distance2D(Vector3f v) {
        return FastMath.sqrt(distanceSquared2D(v));
    }

    /**
     * <code>mult</code> multiplies this vector by a scalar. The resultant
     * vector is returned. "this" is not modified.
     *
     * @param scalar the value to multiply this vector by.
     * @return the new vector.
     */
    public Vector3f mult(float scalar) {
        return new Vector3f(x * scalar, y * scalar, z * scalar);
    }

    /**
     * <code>mult</code> multiplies this vector by a scalar. The resultant
     * vector is supplied as the second parameter and returned. "this" is not
     * modified.
     *
     * @param scalar  the scalar to multiply this vector by.
     * @param product the product to store the result in.
     * @return product
     */
    public Vector3f mult(float scalar, Vector3f product) {
        if (null == product) {
            product = new Vector3f();
        }

        product.x = x * scalar;
        product.y = y * scalar;
        product.z = z * scalar;
        return product;
    }

    /**
     * <code>multLocal</code> multiplies this vector by a scalar internally, and
     * returns a handle to this vector for easy chaining of calls.
     *
     * @param scalar the value to multiply this vector by.
     * @return this
     */
    public Vector3f multLocal(float scalar) {
        x *= scalar;
        y *= scalar;
        z *= scalar;
        return this;
    }

    /**
     * <code>multLocal</code> multiplies a provided vector to this vector
     * internally, and returns a handle to this vector for easy chaining of
     * calls. If the provided vector is null, null is returned. The provided
     * 'vec' is not modified.
     *
     * @param vec the vector to mult to this vector.
     * @return this
     */
    public Vector3f multLocal(Vector3f vec) {
        if (null == vec) {
            return null;
        }
        x *= vec.x;
        y *= vec.y;
        z *= vec.z;
        return this;
    }

    /**
     * Returns a new Vector instance comprised of elements which are the product
     * of the corresponding vector elements. (N.b. this is not a cross product).
     * <p>
     * Neither 'this' nor 'vec' are modified.
     * </P>
     *
     * @param vec the vector to mult to this vector.
     */
    public Vector3f mult(Vector3f vec) {
        if (null == vec) {
            return null;
        }
        return mult(vec, null);
    }

    /**
     * Multiplies a provided 'vec' vector with this vector. If the specified
     * 'store' is null, then a new Vector instance is returned. Otherwise,
     * 'store' with replaced values will be returned, to facilitate chaining.
     * </P>
     * <p>
     * 'This' is not modified; and the starting value of 'store' (if any) is
     * ignored (and over-written).
     * <p>
     * The resultant Vector is comprised of elements which are the product of
     * the corresponding vector elements. (N.b. this is not a cross product).
     * </P>
     *
     * @param vec   the vector to mult to this vector.
     * @param store result vector (null to create a new vector)
     * @return 'store', or a new Vector3f
     */
    public Vector3f mult(Vector3f vec, Vector3f store) {
        if (null == vec) {
            return null;
        }
        if (store == null)
            store = new Vector3f();
        return store.set(x * vec.x, y * vec.y, z * vec.z);
    }

    /**
     * <code>divide</code> divides the values of this vector by a scalar and
     * returns the result. The values of this vector remain untouched.
     *
     * @param scalar the value to divide this vectors attributes by.
     * @return the result <code>Vector</code>.
     */
    public Vector3f divide(float scalar) {
        scalar = 1f / scalar;
        return new Vector3f(x * scalar, y * scalar, z * scalar);
    }

    /**
     * <code>divideLocal</code> divides this vector by a scalar internally, and
     * returns a handle to this vector for easy chaining of calls. Dividing by
     * zero will result in an exception.
     *
     * @param scalar the value to divides this vector by.
     * @return this
     */
    public Vector3f divideLocal(float scalar) {
        scalar = 1f / scalar;
        x *= scalar;
        y *= scalar;
        z *= scalar;
        return this;
    }

    /**
     * <code>divide</code> divides the values of this vector by a scalar and
     * returns the result. The values of this vector remain untouched.
     *
     * @param scalar the value to divide this vectors attributes by.
     * @return the result <code>Vector</code>.
     */
    public Vector3f divide(Vector3f scalar) {
        return new Vector3f(x / scalar.x, y / scalar.y, z / scalar.z);
    }

    /**
     * <code>divideLocal</code> divides this vector by a scalar internally, and
     * returns a handle to this vector for easy chaining of calls. Dividing by
     * zero will result in an exception.
     *
     * @param scalar the value to divides this vector by.
     * @return this
     */
    public Vector3f divideLocal(Vector3f scalar) {
        x /= scalar.x;
        y /= scalar.y;
        z /= scalar.z;
        return this;
    }

    /**
     * <code>negate</code> returns the negative of this vector. All values are
     * negated and set to a new vector.
     *
     * @return the negated vector.
     */
    public Vector3f negate() {
        return new Vector3f(-x, -y, -z);
    }

    /**
     * <code>negateLocal</code> negates the internal values of this vector.
     *
     * @return this.
     */
    public Vector3f negateLocal() {
        x = -x;
        y = -y;
        z = -z;
        return this;
    }

    /**
     * <code>subtract</code> subtracts the values of a given vector from those
     * of this vector creating a new vector object. If the provided vector is
     * null, null is returned.
     *
     * @param vec the vector to subtract from this vector.
     * @return the result vector.
     */
    public Vector3f subtract(Vector3f vec) {
        return new Vector3f(x - vec.x, y - vec.y, z - vec.z);
    }

    public Vector3f subtract2D(Vector3f vec) {
        return new Vector3f(x - vec.x, 0, z - vec.z);
    }

    /**
     * <code>subtractLocal</code> subtracts a provided vector to this vector
     * internally, and returns a handle to this vector for easy chaining of
     * calls. If the provided vector is null, null is returned.
     *
     * @param vec the vector to subtract
     * @return this
     */
    public Vector3f subtractLocal(Vector3f vec) {
        if (null == vec) {
            return null;
        }
        x -= vec.x;
        y -= vec.y;
        z -= vec.z;
        return this;
    }

    /**
     * <code>subtract</code>
     *
     * @param vec    the vector to subtract from this
     * @param result the vector to store the result in
     * @return result
     */
    public Vector3f subtract(Vector3f vec, Vector3f result) {
        if (result == null) {
            result = new Vector3f();
        }
        result.x = x - vec.x;
        result.y = y - vec.y;
        result.z = z - vec.z;
        return result;
    }

    /**
     * <code>subtract</code> subtracts the provided values from this vector,
     * creating a new vector that is then returned.
     *
     * @param subtractX the x value to subtract.
     * @param subtractY the y value to subtract.
     * @param subtractZ the z value to subtract.
     * @return the result vector.
     */
    public Vector3f subtract(float subtractX, float subtractY, float subtractZ) {
        return new Vector3f(x - subtractX, y - subtractY, z - subtractZ);
    }

    /**
     * <code>subtractLocal</code> subtracts the provided values from this vector
     * internally, and returns a handle to this vector for easy chaining of
     * calls.
     *
     * @param subtractX the x value to subtract.
     * @param subtractY the y value to subtract.
     * @param subtractZ the z value to subtract.
     * @return this
     */
    public Vector3f subtractLocal(float subtractX, float subtractY, float subtractZ) {
        x -= subtractX;
        y -= subtractY;
        z -= subtractZ;
        return this;
    }

    /**
     * <code>normalize</code> returns the unit vector of this vector.
     *
     * @return unit vector of this vector.
     */
    public Vector3f normalize() {
        float length = length();
        if (length != 0) {
            return divide(length);
        }

        return divide(1);
    }

    /**
     * <code>normalizeLocal</code> makes this vector into a unit vector of
     * itself.
     *
     * @return this.
     */
    public Vector3f normalizeLocal() {
        float length = length();
        if (length != 0) {
            return divideLocal(length);
        }

        return this;
    }

    /**
     * <code>zero</code> resets this vector's data to zero internally.
     */
    public void zero() {
        x = y = z = 0;
    }

    /**
     * <code>angleBetween</code> returns (in radians) the angle between two
     * vectors. It is assumed that both this vector and the given vector are
     * unit vectors (iow, normalized).
     *
     * @param otherVector a unit vector to find the angle against
     * @return the angle in radians.
     */
    public float angleBetween(Vector3f otherVector) {
        float dotProduct = dot(otherVector);
        return FastMath.acos(dotProduct);
    }

    /**
     * Sets this vector to the interpolation by changeAmnt from this to the
     * finalVec this=(1-changeAmnt)*this + changeAmnt * finalVec
     *
     * @param finalVec   The final vector to interpolate towards
     * @param changeAmnt An amount between 0.0 - 1.0 representing a percentage change
     *                   from this towards finalVec
     */
    public void interpolate(Vector3f finalVec, float changeAmnt) {
        this.x = (1 - changeAmnt) * this.x + changeAmnt * finalVec.x;
        this.y = (1 - changeAmnt) * this.y + changeAmnt * finalVec.y;
        this.z = (1 - changeAmnt) * this.z + changeAmnt * finalVec.z;
    }

    public Vector3f lerp(Vector3f finalVec, float changeAmnt) {
        float x = (1 - changeAmnt) * this.x + changeAmnt * finalVec.x;
        float y = (1 - changeAmnt) * this.y + changeAmnt * finalVec.y;
        float z = (1 - changeAmnt) * this.z + changeAmnt * finalVec.z;
        return new Vector3f(x, y, z);
    }

    /**
     * Sets this vector to the interpolation by changeAmnt from beginVec to
     * finalVec this=(1-changeAmnt)*beginVec + changeAmnt * finalVec
     *
     * @param beginVec   the beginning vector (changeAmnt=0)
     * @param finalVec   The final vector to interpolate towards
     * @param changeAmnt An amount between 0.0 - 1.0 representing a percentage change
     *                   from beginVec towards finalVec
     */
    public void interpolate(Vector3f beginVec, Vector3f finalVec, float changeAmnt) {
        this.x = (1 - changeAmnt) * beginVec.x + changeAmnt * finalVec.x;
        this.y = (1 - changeAmnt) * beginVec.y + changeAmnt * finalVec.y;
        this.z = (1 - changeAmnt) * beginVec.z + changeAmnt * finalVec.z;
    }

    @Override
    public Vector3f clone() {
        try {
            return (Vector3f) super.clone();
        } catch (CloneNotSupportedException e) {
            throw new AssertionError(); // can not happen
        }
    }

    /**
     * Saves this Vector3f into the given float[] object.
     *
     * @param floats The float[] to take this Vector3f. If null, a new float[3] is
     *               created.
     * @return The array, with X, Y, Z float values in that order
     */
    public float[] toArray(float[] floats) {
        if (floats == null) {
            floats = new float[3];
        }
        floats[0] = x;
        floats[1] = y;
        floats[2] = z;
        return floats;
    }

    /**
     * are these two vectors the same? they are is they both have the same x,y,
     * and z values.
     *
     * @param o the object to compare for equality
     * @return true if they are equal
     */
    @Override
    public boolean equals(Object o) {
        if (!(o instanceof Vector3f)) {
            return false;
        }

        if (this == o) {
            return true;
        }

        Vector3f comp = (Vector3f) o;
        if (Float.compare(x, comp.x) != 0)
            return false;
        if (Float.compare(y, comp.y) != 0)
            return false;
        return Float.compare(z, comp.z) == 0;
    }

    /**
     * <code>hashCode</code> returns a unique code for this vector object based
     * on it's values. If two vectors are logically equivalent, they will return
     * the same hash code value.
     *
     * @return the hash code value of this vector.
     */
    @Override
    public int hashCode() {
        int hash = 37;
        hash += 37 * hash + Float.floatToIntBits(x);
        hash += 37 * hash + Float.floatToIntBits(y);
        hash += 37 * hash + Float.floatToIntBits(z);
        return hash;
    }

    /**
     * Used with serialization. Not to be called manually.
     *
     * @param in input
     * @throws IOException
     * @throws ClassNotFoundException
     * @see java.io.Externalizable
     */
    public void readExternal(ObjectInput in) throws IOException, ClassNotFoundException {
        x = in.readFloat();
        y = in.readFloat();
        z = in.readFloat();
    }

    /**
     * Used with serialization. Not to be called manually.
     *
     * @param out output
     * @throws IOException
     * @see java.io.Externalizable
     */
    public void writeExternal(ObjectOutput out) throws IOException {
        out.writeFloat(x);
        out.writeFloat(y);
        out.writeFloat(z);
    }

    public float getX() {
        return x;
    }

    public void setX(float x) {
        this.x = x;
    }

    public float getY() {
        return y;
    }

    public void setY(float y) {
        this.y = y;
    }

    public float getZ() {
        return z;
    }

    public void setZ(float z) {
        this.z = z;
    }

    /**
     * @param index
     * @return x value if index == 0, y value if index == 1 or z value if index
     * == 2
     * @throws IllegalArgumentException if index is not one of 0, 1, 2.
     */
    public float get(int index) {
        switch (index) {
            case 0:
                return x;
            case 1:
                return y;
            case 2:
                return z;
        }
        throw new IllegalArgumentException("index must be either 0, 1 or 2");
    }

    /**
     * @param index which field index in this vector to set.
     * @param value to set to one of x, y or z.
     * @throws IllegalArgumentException if index is not one of 0, 1, 2.
     */
    public void set(int index, float value) {
        switch (index) {
            case 0:
                x = value;
                return;
            case 1:
                y = value;
                return;
            case 2:
                z = value;
                return;
        }
        throw new IllegalArgumentException("index must be either 0, 1 or 2");
    }

    /**
     * Gets an offset from this position based on rotation around Y(up/down)-axis.
     *
     * @param rotation Rotation in radians
     * @param xOffset  Amount to offset along x axis (left negative, right positive)
     * @param yOffset  Amount to offset along y axis (down negative, up positive)
     * @param zOffset  Amount to offset along z axis (backwards negative, forwards positive)
     * @param invertZ  whether to invert the z axis
     */
    public Vector3f getOffset(float rotation, float xOffset, float yOffset, float zOffset, boolean invertZ) {
        float sin = FastMath.sin(rotation);
        float cos = FastMath.cos(rotation);
        Vector3f faceDir = new Vector3f(sin, 0f, cos);
        Vector3f crossDir = new Vector3f(cos, 0f, sin);
        faceDir.multLocal(zOffset);
        crossDir.multLocal(xOffset);
        if (invertZ) {
            faceDir.z = -faceDir.z;
            crossDir.z = -crossDir.z;
        }
        Vector3f loc = new Vector3f(this);
        loc.addLocal(faceDir);
        loc.addLocal(crossDir);
        loc.y += yOffset;
        return loc;
    }

    /**
     * Returns the 2D rotation (around Y-axis) in radians.
     *
     * @return
     */
    public float getRotation() {
        return 3.14f + FastMath.atan2(-x, -z);
    }

    /**
     * Gets the XYZ component of this Vector3f
     *
     * @return
     */
    public Vector2f getLatLong() {
        return new Vector2f(this.x, this.z);
    }

    public synchronized float getLat() {
        return x;
    }

    public synchronized void setLat(float lat) {
        this.x = lat;
    }

    public synchronized float getLong() {
        return z;
    }

    public synchronized void setLong(float lon) {
        this.z = lon;
    }

    public synchronized float getAlt() {
        return y;
    }

    public synchronized void setAlt(float alt) {
        this.y = alt;
    }

    @Override
    public String toString() {
        String out = "";
        out += "x=" + x + ", ";
        out += "y=" + y + ", ";
        out += "z=" + z;
        return out;
    }

}