// • ▌ ▄ ·. ▄▄▄· ▄▄ • ▪ ▄▄· ▄▄▄▄· ▄▄▄· ▐▄▄▄ ▄▄▄ . // ·██ ▐███▪▐█ ▀█ ▐█ ▀ ▪██ ▐█ ▌▪▐█ ▀█▪▐█ ▀█ •█▌ ▐█▐▌· // ▐█ ▌▐▌▐█·▄█▀▀█ ▄█ ▀█▄▐█·██ ▄▄▐█▀▀█▄▄█▀▀█ ▐█▐ ▐▌▐▀▀▀ // ██ ██▌▐█▌▐█ ▪▐▌▐█▄▪▐█▐█▌▐███▌██▄▪▐█▐█ ▪▐▌██▐ █▌▐█▄▄▌ // ▀▀ █▪▀▀▀ ▀ ▀ ·▀▀▀▀ ▀▀▀·▀▀▀ ·▀▀▀▀ ▀ ▀ ▀▀ █▪ ▀▀▀ // Magicbane Emulator Project © 2013 - 2022 // www.magicbane.com package engine.math; import java.io.IOException; import java.io.ObjectInput; import java.io.ObjectOutput; /** * Vector3f defines a Vector for a three float value tuple. * Vector3f can represent any three dimensional value, such as a * vertex, a normal, etc. Utility methods are also included to aid in * mathematical calculations. * */ public class Vector3f { public final static Vector3f ZERO = new Vector3f(0, 0, 0); public final static Vector3f UNIT_X = new Vector3f(1, 0, 0); public final static Vector3f UNIT_Y = new Vector3f(0, 1, 0); public final static Vector3f UNIT_Z = new Vector3f(0, 0, 1); public final static Vector3f UNIT_XYZ = new Vector3f(1, 1, 1); /** * the x value of the vector. */ public float x; /** * the y value of the vector. */ public float y; /** * the z value of the vector. */ public float z; /** * Constructor instantiates a new Vector3f with default values * of (0,0,0). * */ public Vector3f() { x = y = z = 0.0f; } /** * Constructor instantiates a new Vector3f with provides * values. * * @param x * the x value of the vector. * @param y * the y value of the vector. * @param z * the z value of the vector. */ public Vector3f(float x, float y, float z) { this.x = x; this.y = y; this.z = z; } public Vector3f(Vector3fImmutable original) { this.x = original.x; this.y = original.y; this.z = original.z; } /** * Constructor instantiates a new Vector3f that is a copy of * the provided vector * * @param copy * The Vector3f to copy */ public Vector3f(Vector3f copy) { this.set(copy); } /** * set sets the x,y,z values of the vector based on passed * parameters. * * @param x * the x value of the vector. * @param y * the y value of the vector. * @param z * the z value of the vector. * @return this vector */ public Vector3f set(float x, float y, float z) { this.x = x; this.y = y; this.z = z; return this; } /** * set sets the x,y,z values of the vector by copying the * supplied vector. * * @param vect * the vector to copy. * @return this vector */ public Vector3f set(Vector3f vect) { this.x = vect.x; this.y = vect.y; this.z = vect.z; return this; } /** * * add adds a provided vector to this vector creating a * resultant vector which is returned. If the provided vector is null, null * is returned. * * Neither 'this' nor 'vec' are modified. * * @param vec * the vector to add to this. * @return the resultant vector. */ public Vector3f add(Vector3f vec) { if (null == vec) { return null; } return new Vector3f(x + vec.x, y + vec.y, z + vec.z); } /** * * add adds the values of a provided vector storing the values * in the supplied vector. * * @param vec * the vector to add to this * @param result * the vector to store the result in * @return result returns the supplied result vector. */ public Vector3f add(Vector3f vec, Vector3f result) { result.x = x + vec.x; result.y = y + vec.y; result.z = z + vec.z; return result; } /** * addLocal adds a provided vector to this vector internally, * and returns a handle to this vector for easy chaining of calls. If the * provided vector is null, null is returned. * * @param vec * the vector to add to this vector. * @return this */ public Vector3f addLocal(Vector3f vec) { if (null == vec) { return null; } x += vec.x; y += vec.y; z += vec.z; return this; } /** * * add adds the provided values to this vector, creating a new * vector that is then returned. * * @param addX * the x value to add. * @param addY * the y value to add. * @param addZ * the z value to add. * @return the result vector. */ public Vector3f add(float addX, float addY, float addZ) { return new Vector3f(x + addX, y + addY, z + addZ); } /** * addLocal adds the provided values to this vector internally, * and returns a handle to this vector for easy chaining of calls. * * @param addX * value to add to x * @param addY * value to add to y * @param addZ * value to add to z * @return this */ public Vector3f addLocal(float addX, float addY, float addZ) { x += addX; y += addY; z += addZ; return this; } /** * * scaleAdd multiplies this vector by a scalar then adds the * given Vector3f. * * @param scalar * the value to multiply this vector by. * @param add * the value to add */ public void scaleAdd(float scalar, Vector3f add) { x = x * scalar + add.x; y = y * scalar + add.y; z = z * scalar + add.z; } /** * * scaleAdd multiplies the given vector by a scalar then adds * the given vector. * * @param scalar * the value to multiply this vector by. * @param mult * the value to multiply the scalar by * @param add * the value to add */ public void scaleAdd(float scalar, Vector3f mult, Vector3f add) { this.x = mult.x * scalar + add.x; this.y = mult.y * scalar + add.y; this.z = mult.z * scalar + add.z; } /** * * dot calculates the dot product of this vector with a * provided vector. If the provided vector is null, 0 is returned. * * @param vec * the vector to dot with this vector. * @return the resultant dot product of this vector and a given vector. */ public float dot(Vector3f vec) { if (null == vec) { return 0; } return x * vec.x + y * vec.y + z * vec.z; } /** * Returns a new vector which is the cross product of this vector with the * specified vector. *

* Neither 'this' nor v are modified. The starting value of 'result' *

* * @param v * the vector to take the cross product of with this. * @return the cross product vector. */ public Vector3f cross(Vector3f v) { return cross(v, null); } /** * cross calculates the cross product of this vector with a * parameter vector v. The result is stored in result *

* Neither 'this' nor v are modified. The starting value of 'result' (if * any) is ignored. *

* * @param v * the vector to take the cross product of with this. * @param result * the vector to store the cross product result. * @return result, after receiving the cross product vector. */ public Vector3f cross(Vector3f v, Vector3f result) { return cross(v.x, v.y, v.z, result); } /** * cross calculates the cross product of this vector with a * Vector comprised of the specified other* elements. The result is stored * in result, without modifying either 'this' or the 'other*' * values. * * @param otherX * x component of the vector to take the cross product of with * this. * @param otherY * y component of the vector to take the cross product of with * this. * @param otherZ * z component of the vector to take the cross product of with * this. * @param result * the vector to store the cross product result. * @return result, after receiving the cross product vector. */ public Vector3f cross(float otherX, float otherY, float otherZ, Vector3f result) { if (result == null) result = new Vector3f(); float resX = ((y * otherZ) - (z * otherY)); float resY = ((z * otherX) - (x * otherZ)); float resZ = ((x * otherY) - (y * otherX)); result.set(resX, resY, resZ); return result; } /** * crossLocal calculates the cross product of this vector with * a parameter vector v. * * @param v * the vector to take the cross product of with this. * @return this. */ public Vector3f crossLocal(Vector3f v) { return crossLocal(v.x, v.y, v.z); } /** * crossLocal calculates the cross product of this vector with * a parameter vector v. * * @param otherX * x component of the vector to take the cross product of with * this. * @param otherY * y component of the vector to take the cross product of with * this. * @param otherZ * z component of the vector to take the cross product of with * this. * @return this. */ public Vector3f crossLocal(float otherX, float otherY, float otherZ) { float tempx = (y * otherZ) - (z * otherY); float tempy = (z * otherX) - (x * otherZ); z = (x * otherY) - (y * otherX); x = tempx; y = tempy; return this; } /** * length calculates the magnitude of this vector. * * @return the length or magnitude of the vector. */ public float length() { return FastMath.sqrt(lengthSquared()); } /** * lengthSquared calculates the squared value of the magnitude * of the vector. * * @return the magnitude squared of the vector. */ public float lengthSquared() { return x * x + y * y + z * z; } /** * distanceSquared calculates the distance squared between this * vector and vector v. * * @param v * the second vector to determine the distance squared. * @return the distance squared between the two vectors. */ public float distanceSquared(Vector3f v) { double dx = x - v.x; double dy = y - v.y; double dz = z - v.z; return (float) (dx * dx + dy * dy + dz * dz); } public float distanceSquared2D(Vector3f v) { double dx = x - v.x; double dz = z - v.z; return (float) (dx * dx + dz * dz); } /** * distance calculates the distance between this vector and * vector v. * * @param v * the second vector to determine the distance. * @return the distance between the two vectors. */ public float distance(Vector3f v) { return FastMath.sqrt(distanceSquared(v)); } public float distance2D(Vector3f v) { return FastMath.sqrt(distanceSquared2D(v)); } /** * mult multiplies this vector by a scalar. The resultant * vector is returned. "this" is not modified. * * @param scalar * the value to multiply this vector by. * @return the new vector. */ public Vector3f mult(float scalar) { return new Vector3f(x * scalar, y * scalar, z * scalar); } /** * * mult multiplies this vector by a scalar. The resultant * vector is supplied as the second parameter and returned. "this" is not * modified. * * @param scalar * the scalar to multiply this vector by. * @param product * the product to store the result in. * @return product */ public Vector3f mult(float scalar, Vector3f product) { if (null == product) { product = new Vector3f(); } product.x = x * scalar; product.y = y * scalar; product.z = z * scalar; return product; } /** * multLocal multiplies this vector by a scalar internally, and * returns a handle to this vector for easy chaining of calls. * * @param scalar * the value to multiply this vector by. * @return this */ public Vector3f multLocal(float scalar) { x *= scalar; y *= scalar; z *= scalar; return this; } /** * multLocal multiplies a provided vector to this vector * internally, and returns a handle to this vector for easy chaining of * calls. If the provided vector is null, null is returned. The provided * 'vec' is not modified. * * @param vec * the vector to mult to this vector. * @return this */ public Vector3f multLocal(Vector3f vec) { if (null == vec) { return null; } x *= vec.x; y *= vec.y; z *= vec.z; return this; } /** * Returns a new Vector instance comprised of elements which are the product * of the corresponding vector elements. (N.b. this is not a cross product). *

* Neither 'this' nor 'vec' are modified. *

* * @param vec * the vector to mult to this vector. */ public Vector3f mult(Vector3f vec) { if (null == vec) { return null; } return mult(vec, null); } /** * Multiplies a provided 'vec' vector with this vector. If the specified * 'store' is null, then a new Vector instance is returned. Otherwise, * 'store' with replaced values will be returned, to facilitate chaining. *

*

*'This' is not modified; and the starting value of 'store' (if any) is * ignored (and over-written). *

* The resultant Vector is comprised of elements which are the product of * the corresponding vector elements. (N.b. this is not a cross product). *

* * @param vec * the vector to mult to this vector. * @param store * result vector (null to create a new vector) * @return 'store', or a new Vector3f */ public Vector3f mult(Vector3f vec, Vector3f store) { if (null == vec) { return null; } if (store == null) store = new Vector3f(); return store.set(x * vec.x, y * vec.y, z * vec.z); } /** * divide divides the values of this vector by a scalar and * returns the result. The values of this vector remain untouched. * * @param scalar * the value to divide this vectors attributes by. * @return the result Vector. */ public Vector3f divide(float scalar) { scalar = 1f / scalar; return new Vector3f(x * scalar, y * scalar, z * scalar); } /** * divideLocal divides this vector by a scalar internally, and * returns a handle to this vector for easy chaining of calls. Dividing by * zero will result in an exception. * * @param scalar * the value to divides this vector by. * @return this */ public Vector3f divideLocal(float scalar) { scalar = 1f / scalar; x *= scalar; y *= scalar; z *= scalar; return this; } /** * divide divides the values of this vector by a scalar and * returns the result. The values of this vector remain untouched. * * @param scalar * the value to divide this vectors attributes by. * @return the result Vector. */ public Vector3f divide(Vector3f scalar) { return new Vector3f(x / scalar.x, y / scalar.y, z / scalar.z); } /** * divideLocal divides this vector by a scalar internally, and * returns a handle to this vector for easy chaining of calls. Dividing by * zero will result in an exception. * * @param scalar * the value to divides this vector by. * @return this */ public Vector3f divideLocal(Vector3f scalar) { x /= scalar.x; y /= scalar.y; z /= scalar.z; return this; } /** * * negate returns the negative of this vector. All values are * negated and set to a new vector. * * @return the negated vector. */ public Vector3f negate() { return new Vector3f(-x, -y, -z); } /** * * negateLocal negates the internal values of this vector. * * @return this. */ public Vector3f negateLocal() { x = -x; y = -y; z = -z; return this; } /** * * subtract subtracts the values of a given vector from those * of this vector creating a new vector object. If the provided vector is * null, null is returned. * * @param vec * the vector to subtract from this vector. * @return the result vector. */ public Vector3f subtract(Vector3f vec) { return new Vector3f(x - vec.x, y - vec.y, z - vec.z); } public Vector3f subtract2D(Vector3f vec) { return new Vector3f(x - vec.x, 0, z - vec.z); } /** * subtractLocal subtracts a provided vector to this vector * internally, and returns a handle to this vector for easy chaining of * calls. If the provided vector is null, null is returned. * * @param vec * the vector to subtract * @return this */ public Vector3f subtractLocal(Vector3f vec) { if (null == vec) { return null; } x -= vec.x; y -= vec.y; z -= vec.z; return this; } /** * * subtract * * @param vec * the vector to subtract from this * @param result * the vector to store the result in * @return result */ public Vector3f subtract(Vector3f vec, Vector3f result) { if (result == null) { result = new Vector3f(); } result.x = x - vec.x; result.y = y - vec.y; result.z = z - vec.z; return result; } /** * * subtract subtracts the provided values from this vector, * creating a new vector that is then returned. * * @param subtractX * the x value to subtract. * @param subtractY * the y value to subtract. * @param subtractZ * the z value to subtract. * @return the result vector. */ public Vector3f subtract(float subtractX, float subtractY, float subtractZ) { return new Vector3f(x - subtractX, y - subtractY, z - subtractZ); } /** * subtractLocal subtracts the provided values from this vector * internally, and returns a handle to this vector for easy chaining of * calls. * * @param subtractX * the x value to subtract. * @param subtractY * the y value to subtract. * @param subtractZ * the z value to subtract. * @return this */ public Vector3f subtractLocal(float subtractX, float subtractY, float subtractZ) { x -= subtractX; y -= subtractY; z -= subtractZ; return this; } /** * normalize returns the unit vector of this vector. * * @return unit vector of this vector. */ public Vector3f normalize() { float length = length(); if (length != 0) { return divide(length); } return divide(1); } /** * normalizeLocal makes this vector into a unit vector of * itself. * * @return this. */ public Vector3f normalizeLocal() { float length = length(); if (length != 0) { return divideLocal(length); } return this; } /** * zero resets this vector's data to zero internally. */ public void zero() { x = y = z = 0; } /** * angleBetween returns (in radians) the angle between two * vectors. It is assumed that both this vector and the given vector are * unit vectors (iow, normalized). * * @param otherVector * a unit vector to find the angle against * @return the angle in radians. */ public float angleBetween(Vector3f otherVector) { float dotProduct = dot(otherVector); return FastMath.acos(dotProduct); } /** * Sets this vector to the interpolation by changeAmnt from this to the * finalVec this=(1-changeAmnt)*this + changeAmnt * finalVec * * @param finalVec * The final vector to interpolate towards * @param changeAmnt * An amount between 0.0 - 1.0 representing a percentage change * from this towards finalVec */ public void interpolate(Vector3f finalVec, float changeAmnt) { this.x = (1 - changeAmnt) * this.x + changeAmnt * finalVec.x; this.y = (1 - changeAmnt) * this.y + changeAmnt * finalVec.y; this.z = (1 - changeAmnt) * this.z + changeAmnt * finalVec.z; } public Vector3f lerp(Vector3f finalVec, float changeAmnt) { float x = (1 - changeAmnt) * this.x + changeAmnt * finalVec.x; float y = (1 - changeAmnt) * this.y + changeAmnt * finalVec.y; float z = (1 - changeAmnt) * this.z + changeAmnt * finalVec.z; return new Vector3f(x,y,z); } /** * Sets this vector to the interpolation by changeAmnt from beginVec to * finalVec this=(1-changeAmnt)*beginVec + changeAmnt * finalVec * * @param beginVec * the beginning vector (changeAmnt=0) * @param finalVec * The final vector to interpolate towards * @param changeAmnt * An amount between 0.0 - 1.0 representing a percentage change * from beginVec towards finalVec */ public void interpolate(Vector3f beginVec, Vector3f finalVec, float changeAmnt) { this.x = (1 - changeAmnt) * beginVec.x + changeAmnt * finalVec.x; this.y = (1 - changeAmnt) * beginVec.y + changeAmnt * finalVec.y; this.z = (1 - changeAmnt) * beginVec.z + changeAmnt * finalVec.z; } /** * Check a vector... if it is null or its floats are NaN or infinite, return * false. Else return true. * * @param vector * the vector to check * @return true or false as stated above. */ public static boolean isValidVector(Vector3f vector) { if (vector == null) return false; if (Float.isNaN(vector.x) || Float.isNaN(vector.y) || Float.isNaN(vector.z)) return false; return !Float.isInfinite(vector.x) && !Float.isInfinite(vector.y) && !Float.isInfinite(vector.z); } public static void generateOrthonormalBasis(Vector3f u, Vector3f v, Vector3f w) { w.normalizeLocal(); generateComplementBasis(u, v, w); } public static void generateComplementBasis(Vector3f u, Vector3f v, Vector3f w) { float fInvLength; if (FastMath.abs(w.x) >= FastMath.abs(w.y)) { // w.x or w.z is the largest magnitude component, swap them fInvLength = FastMath.invSqrt(w.x * w.x + w.z * w.z); u.x = -w.z * fInvLength; u.y = 0.0f; u.z = +w.x * fInvLength; v.x = w.y * u.z; v.y = w.z * u.x - w.x * u.z; v.z = -w.y * u.x; } else { // w.y or w.z is the largest magnitude component, swap them fInvLength = FastMath.invSqrt(w.y * w.y + w.z * w.z); u.x = 0.0f; u.y = +w.z * fInvLength; u.z = -w.y * fInvLength; v.x = w.y * u.z - w.z * u.y; v.y = -w.x * u.z; v.z = w.x * u.y; } } @Override public Vector3f clone() { try { return (Vector3f) super.clone(); } catch (CloneNotSupportedException e) { throw new AssertionError(); // can not happen } } /** * Saves this Vector3f into the given float[] object. * * @param floats * The float[] to take this Vector3f. If null, a new float[3] is * created. * @return The array, with X, Y, Z float values in that order */ public float[] toArray(float[] floats) { if (floats == null) { floats = new float[3]; } floats[0] = x; floats[1] = y; floats[2] = z; return floats; } /** * are these two vectors the same? they are is they both have the same x,y, * and z values. * * @param o * the object to compare for equality * @return true if they are equal */ @Override public boolean equals(Object o) { if (!(o instanceof Vector3f)) { return false; } if (this == o) { return true; } Vector3f comp = (Vector3f) o; if (Float.compare(x, comp.x) != 0) return false; if (Float.compare(y, comp.y) != 0) return false; return Float.compare(z, comp.z) == 0; } /** * hashCode returns a unique code for this vector object based * on it's values. If two vectors are logically equivalent, they will return * the same hash code value. * * @return the hash code value of this vector. */ @Override public int hashCode() { int hash = 37; hash += 37 * hash + Float.floatToIntBits(x); hash += 37 * hash + Float.floatToIntBits(y); hash += 37 * hash + Float.floatToIntBits(z); return hash; } /** * Used with serialization. Not to be called manually. * * @param in * input * @throws IOException * @throws ClassNotFoundException * @see java.io.Externalizable */ public void readExternal(ObjectInput in) throws IOException, ClassNotFoundException { x = in.readFloat(); y = in.readFloat(); z = in.readFloat(); } /** * Used with serialization. Not to be called manually. * * @param out * output * @throws IOException * @see java.io.Externalizable */ public void writeExternal(ObjectOutput out) throws IOException { out.writeFloat(x); out.writeFloat(y); out.writeFloat(z); } public float getX() { return x; } public void setX(float x) { this.x = x; } public float getY() { return y; } public void setY(float y) { this.y = y; } public float getZ() { return z; } public void setZ(float z) { this.z = z; } /** * @param index * @return x value if index == 0, y value if index == 1 or z value if index * == 2 * @throws IllegalArgumentException * if index is not one of 0, 1, 2. */ public float get(int index) { switch (index) { case 0: return x; case 1: return y; case 2: return z; } throw new IllegalArgumentException("index must be either 0, 1 or 2"); } /** * @param index * which field index in this vector to set. * @param value * to set to one of x, y or z. * @throws IllegalArgumentException * if index is not one of 0, 1, 2. */ public void set(int index, float value) { switch (index) { case 0: x = value; return; case 1: y = value; return; case 2: z = value; return; } throw new IllegalArgumentException("index must be either 0, 1 or 2"); } /** * Gets an offset from this position based on rotation around Y(up/down)-axis. * * @param rotation * Rotation in radians * @param xOffset * Amount to offset along x axis (left negative, right positive) * @param yOffset * Amount to offset along y axis (down negative, up positive) * @param zOffset * Amount to offset along z axis (backwards negative, forwards positive) * @param invertZ * whether to invert the z axis */ public Vector3f getOffset(float rotation, float xOffset, float yOffset, float zOffset, boolean invertZ) { float sin = FastMath.sin(rotation); float cos = FastMath.cos(rotation); Vector3f faceDir = new Vector3f(sin, 0f, cos); Vector3f crossDir = new Vector3f(cos, 0f, sin); faceDir.multLocal(zOffset); crossDir.multLocal(xOffset); if (invertZ) { faceDir.z = -faceDir.z; crossDir.z = -crossDir.z; } Vector3f loc = new Vector3f(this); loc.addLocal(faceDir); loc.addLocal(crossDir); loc.y += yOffset; return loc; } /** * Returns the 2D face direction from rotation. * * @param rotation * Rotation in radians */ public static Vector3f getFaceDir(float rotation) { return new Vector3f(FastMath.sin(rotation), 0f, FastMath.cos(rotation)); } /** * Returns the 2D cross direction (perpendicular face direction) from rotation. * * @param rotation * Rotation in radians */ public static Vector3f getCrossDir(float rotation) { return new Vector3f(FastMath.cos(rotation), 0f, FastMath.sin(rotation)); } /** * Returns the 2D rotation (around Y-axis) in radians. * * @return */ public float getRotation() { return 3.14f + FastMath.atan2(-x, -z); } /** * Gets the XYZ component of this Vector3f * * @return */ public Vector2f getLatLong() { return new Vector2f(this.x, this.z); } public synchronized float getLat() { return x; } public synchronized float getLong() { return z; } public synchronized float getAlt() { return y; } public synchronized void setLat(float lat) { this.x = lat; } public synchronized void setLong(float lon) { this.z = lon; } public synchronized void setAlt(float alt) { this.y = alt; } public static Vector3f rotateAroundPoint(Vector3f origin, Vector3f point, double angle) { float angleRadians; double modifiedAngle; // Convert angle to radians modifiedAngle = angle; if (angle < 0) modifiedAngle = 360 + modifiedAngle; angleRadians = (float) Math.toRadians(modifiedAngle); return rotateAroundPoint(origin, point, angleRadians); } public static Vector3f rotateAroundPoint(Vector3f origin, Vector3f point, float radians) { Vector3f outVector; Vector3f directionVector; Quaternion angleRotation; // Build direction vector relative to origin directionVector = new Vector3f(point.subtract(origin)); // Build quaternion rotation angleRotation = new Quaternion().fromAngleAxis(radians, new Vector3f(0,1,0)); // Apply rotation to direction vector directionVector = angleRotation.mult(directionVector); // Translate from origin back to new rotated point outVector = origin.add(directionVector); return outVector; } @Override public String toString() { String out = ""; out += "x=" + x + ", "; out += "y=" + y + ", "; out += "z=" + z; return out; } public static Vector3f min(Vector3f vectorA, Vector3f vectorB) { return new Vector3f(Math.min(vectorA.x, vectorB.x), Math.min(vectorA.y, vectorB.y), Math.min(vectorA.z, vectorB.z)); } public static Vector3f max(Vector3f vectorA, Vector3f vectorB) { return new Vector3f(Math.max(vectorA.x, vectorB.x), Math.max(vectorA.y, vectorB.y), Math.max(vectorA.z, vectorB.z)); } public static Vector3f rotateAroundPoint(Vector3f origin, Vector3f point,Quaternion angleRotation) { Vector3f outVector; Vector3f directionVector; // Build direction vector relative to origin directionVector = new Vector3f(point.subtract(origin)); directionVector = angleRotation.mult(directionVector); // Translate from origin back to new rotated point outVector = origin.add(directionVector); return outVector; } }