You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
109 lines
4.0 KiB
109 lines
4.0 KiB
2 years ago
|
# • ▌ ▄ ·. ▄▄▄▄· ▄▄▄ .·▄▄▄▄ ▪ ▄▄▄▄▄ ▄▄▄ ▄▄▄·▄▄▄
|
||
|
# ·██ ▐███▪▐█ ▀█▪ ▀▄.▀·██▪ ██ ██ •██ ▪ ▀▄ █· ▐█ ▄█▀▄ █·▪
|
||
|
# ▐█ ▌▐▌▐█·▐█▀▀█▄ ▐▀▀▪▄▐█· ▐█▌▐█· ▐█.▪ ▄█▀▄ ▐▀▀▄ ██▀·▐▀▀▄ ▄█▀▄
|
||
|
# ██ ██▌▐█▌██▄▪▐█ ▐█▄▄▌██. ██ ▐█▌ ▐█▌·▐█▌.▐▌▐█•█▌ ▐█▪·•▐█•█▌▐█▌.▐▌
|
||
|
# ▀▀ █▪▀▀▀·▀▀▀▀ ▀▀▀ ▀▀▀▀▀• ▀▀▀ ▀▀▀ ▀█▄▀▪.▀ ▀ .▀ .▀ ▀ ▀█▄▀▪
|
||
|
# Magicbane Emulator Project © 2013 - 2022
|
||
|
# www.magicbane.com
|
||
|
|
||
2 years ago
|
from collections import OrderedDict
|
||
|
|
||
|
from arcane.enums.arc_sparse import *
|
||
|
from arcane.util import ResStream
|
||
|
|
||
|
|
||
|
class SparseData:
|
||
|
def __init__(self) -> None:
|
||
|
self.sp_data = OrderedDict()
|
||
|
|
||
|
def load_binary(self, stream: ResStream):
|
||
|
sparse_tag = stream.read_dword()
|
||
|
while sparse_tag:
|
||
|
sparse_type = SPARSE_TAG_TO_SPARSE_TYPE[sparse_tag]
|
||
|
value = None
|
||
|
|
||
|
if sparse_type == SPARSE_VAL_LONG:
|
||
|
value = stream.read_dword()
|
||
|
|
||
|
elif sparse_type == SPARSE_VAL_FLOAT:
|
||
|
value = stream.read_float()
|
||
|
|
||
|
elif sparse_type == SPARSE_VAL_BOOL:
|
||
|
value = stream.read_bool()
|
||
|
|
||
|
elif sparse_type == SPARSE_UID:
|
||
|
value = stream.read_dword()
|
||
|
|
||
|
elif sparse_type == SPARSE_REF_VECTOR3:
|
||
|
value = stream.read_tuple()
|
||
|
|
||
|
elif sparse_type == SPARSE_REF_ARC_STRING:
|
||
|
value = stream.read_string()
|
||
|
|
||
|
elif sparse_type == SPARSE_REF_MERCHANT_DATA:
|
||
|
value = [
|
||
|
stream.read_qword(),
|
||
|
stream.read_qword(),
|
||
|
stream.read_dword(),
|
||
|
]
|
||
|
|
||
|
elif sparse_type == SPARSE_REF_ARC_CACHE_ID:
|
||
|
value = stream.read_qword()
|
||
|
|
||
|
elif sparse_type == SPARSE_PTR_ACTION_RESPONSE:
|
||
|
value = stream.read_dword()
|
||
|
|
||
|
elif sparse_type == SPARSE_ENUM_ITEM_TYPE:
|
||
|
value = stream.read_dword()
|
||
|
|
||
|
self.sp_data[sparse_tag] = value
|
||
|
sparse_tag = stream.read_dword()
|
||
|
|
||
|
def save_binary(self, stream: ResStream):
|
||
|
for tag, value in self.sp_data.items():
|
||
|
stream.write_dword(tag)
|
||
|
|
||
|
sparse_type = SPARSE_TAG_TO_SPARSE_TYPE[tag]
|
||
|
if sparse_type == SPARSE_VAL_LONG:
|
||
|
stream.write_dword(value)
|
||
|
|
||
|
elif sparse_type == SPARSE_VAL_FLOAT:
|
||
|
stream.write_float(value)
|
||
|
|
||
|
elif sparse_type == SPARSE_VAL_BOOL:
|
||
|
stream.write_bool(value)
|
||
|
|
||
|
elif sparse_type == SPARSE_UID:
|
||
|
stream.write_dword(value)
|
||
|
|
||
|
elif sparse_type == SPARSE_REF_VECTOR3:
|
||
|
stream.write_tuple(value)
|
||
|
|
||
|
elif sparse_type == SPARSE_REF_ARC_STRING:
|
||
|
stream.write_string(value)
|
||
|
|
||
|
elif sparse_type == SPARSE_REF_MERCHANT_DATA:
|
||
|
stream.write_qword(value[0])
|
||
|
stream.write_qword(value[1])
|
||
|
stream.write_qword(value[2])
|
||
|
|
||
|
elif sparse_type == SPARSE_REF_ARC_CACHE_ID:
|
||
|
stream.write_qword(value)
|
||
|
|
||
|
elif sparse_type == SPARSE_PTR_ACTION_RESPONSE:
|
||
|
stream.write_dword(value)
|
||
|
|
||
|
elif sparse_type == SPARSE_ENUM_ITEM_TYPE:
|
||
|
stream.write_dword(value)
|
||
|
stream.write_dword(0)
|
||
|
|
||
|
def load_json(self, data):
|
||
|
for key, value in data.items():
|
||
|
self.sp_data[STRING_TO_SPARSE_TAG[key]] = value
|
||
|
|
||
|
def save_json(self):
|
||
|
data = OrderedDict()
|
||
|
for tag, value in self.sp_data.items():
|
||
|
data[SPARSE_TAG_TO_STRING[tag]] = value
|
||
|
return data
|